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ABSTRACT

A variational higher-order theory has been developed for representing the bending and
stretching of linearly elastic orthotropic beams which include the deformations due to transverse
shearing and stretching of the transverse normal. The theory assumes a linear distribution for the
longitudinal displacement and a parabolic variation of the transverse displacement across the
thickness. Independent expansions are also introduced in order to represent the through-thickness
displacement gradients by requiring least-square compatibility for the transverse strains and the
exact stress boundary conditions at the top/bottom beam surfaces. The theory is shown to be well
suited for finite element development by requiring simple C0- and C'-continuous displacement
interpolation fields. Computational utility of the theory is demonstrated by formulating a simple
two-node stretching-bending finite element. Both analytic and finite element procedures are
applied to a simple bending problem and compared to an exact elasticity solution. It is shown
that the inclusion of the transverse normal deformation in the present theory provides an
improved displacement, strain and stress prediction capability, particularly for the analysis of
thick-section beams.
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NOMENCLATURE

A cross-sectional area of beam
Aij inplane rigidities
b width of beam's cross-section
CO  the class of continuous functions possessing

discontinuous derivatives at element nodes
CI the class of continuous functions that are

discontinuous at element nodes
Cij elastic stiffness coefficients
Dij bending rigidities
Ej elastic moduli
f consistent load vector
G transverse shear rigidity
2h beam thickness
IY cross-sectional moment of inertia about y-axis
Ke element stiffness matrix
L beam span
Nx, N., Q, force resultants
Mx, M, moment resultants
q, q+, q applied transverse loads
S+, S top and bottom beam surfaces
Tu  prescribed end tractions WSPEV ,

u midplane displacement along x-axis
u,, u, Cartesian displacement components
w, wi transverse displacements
x, z axial and transverse coordinates

transverse shear strain
variational operator Accession For

Z, Kc strain and curvature components NTIS a BRA
bending cross-sectional rotation D0C AB oUnannounced'or ]

, I dimensionless coordinates Just rt o
Vii Poisson's ratios
a1ij, rz stress components By_beam element length Distribution/

Availability Co483
IA ' azand/or

Dist Special
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INTRODUCTION

In the simplest cases of beam bending, vibration and stability, analytic solutions can be
obtained using the Bernoulli-Euler (classical) or Timoshenko beam theories, with the latter
accounting for the deformation due to transverse shear.' 2  Analytic solutions can be either
difficult or impossible to obtain for the many practical applications of beams as reinforcing
members in plate and shell structures and whenever nonlinear deformation/material behavior is
considered. In all of these cases, the finite element method enables the analyst to obtain
sufficiently accurate approximate solutions.

The principal benefit of the Timoshenko beam modeling 3"5 is the ability to properly account
for transverse shear deformation, the effect that can be significant in deep beams and those made
of laminated composites which are known to exhibit relatively low transverse shear stiffness.
Since the Timoshenko theory does not account for the deformation in the transverse normal
direction, it precludes solutions to problems which lend themselves to the three-dimensional state
of stress. An example is the composite beam subject to impact loading 6 or high-frequency
vibrational modes (i.e., short-wavelength loading).

Recently, Tessler"9 has developed a higher-order plate theory for linearly elastic orthotropic
plates, incorporating the deformation effects due to the inplane stretching, transverse shear and
transverse normal straining. The theory includes both linear inplane and quadratic transverse
displacement expansions and, due to a special form of a variational statement, is particularly
attractive for finite element development. An extension of the above theory to laminated
composites and the development of a simple triangular plate element has been presented by
Tessler and Saether.' t In this paper, a higher-order theory for linearly elastic orthotropic beams,
a one-dimensional analogue of the plate theory," is presented. Also, a simple two-node beam
finite element is formulated and its predictive capability is evaluated with respect to both analytic
and exact elasticity solutions.

In the section on Higher-Order Beam Theory which follows, the essential aspects of the
present beam theory are discussed. Its distinguishing feature is that the equations of equilibrium
and appropriate boundary conditions are derived from a virtual work theorem which employs
both conventional (Timoshenko-type) displacement variables and two higher-order transverse
displacement variables. The former variables have the highest spatial derivatives of order one,
whereas the latter variables possess no derivatives. The major issue for finite element
development is that C°-continuous finite element approximations being used for the Timoshenko
displacements and only (C t) ' approximations for the higher-order displacements. The
implication is that the higher-order variables can be calculated as auxiliary values and condensed
out statically at the finite element level. This results in the element equilibrium equations being
of the same complexity as those corresponding to Timoshenko theory elements. The advantage

IWhereas Co continuous functions are continuous within the element domain and at the nodes, C' functions are only
continuous within the element and can be discontinuous at the nodes. Both of these classes of functions may yield
discontinuous derivatives at the nodes.



of the present methodology is that both transverse shear and transverse normal deformations are
represented where the resulting equations are the same order as in Timoshenko theory; however,
the range of applicability of the present theory allows for extention to thicker beams.

In the Two-Node Beam Element Section, a simple two-node beam element is developed using
the present theory. The anisoparametric interpolations, "s' originally derived to eliminate thin-
regime shear locking in Timoshenko beam elements, are used for the element kinematic variables.
Both analytic and finite element solutions for a classical beam problem are presented in the
Discussion of Results Section and the results are compared with those obtained from Timoshenko
and elasticity theories.

HIGHER-ORDER BEAM THEORY

In order to clarify the development of the theory, consider the bending of an elastic orthotropic
beam having a narrow rectangular cross-section of width b, height 2h, and spanning the length
L; the beam is located in the x-z Cartesian frame with the x-axis (xe [0, L]) passing through the
midplane (refer to Figure 1).

q+

jz. uZ

h

Figure 1. Beam sign convention.

We expand the longitudinal and transverse displacement components (u1 and uz) with respect to

the dimensionless thickness coordinate =z/hE [-1, 1], where u, has a special parabolic form:

u (x, z) - u(x)+hTO(x), u,(x, z) = w(x)+ w1(x)+( 2-.)w 2(x) (1)

where 4=0 identifies the position of the reference midplane; note that the expansion for u, is such
that w(x) represents a weighted-average transverse displacement rather than the midplane deflec-
tion, i.e.
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w(x) = .hu (x,z)(1 - 2 )dz (2)

The expansion coefficients u(x) and O(x) are also defined as weighted averages according to

u(x) = _u(xz)dz, 8(x) f jfu(x,z)zdz (3)

where u(x) is the midplane displacement along the x axis, whereas O(x) is the rotation of the
normal about the y axis. Assuming the beam is made of a linearly elastic orthotropic material
having its principal material directions coincident with the Cartesian coordinates, a two-
dimensional Hooke's law can be written as13

G X C 1 C 13 0

,, : 3 C 33 0 (4 )
N = 0 Cs5ty

where the elastic stiffness coefficients Cij can be expressed in terms of the engineering elastic
constants as

C1- E C33 E- 3 (5)31 113 31 13

C13 =C33v13, C55 =G 3, and E1v31 =E3v 13

where E, and E3 are the longitudinal and transverse normal elastic moduli, v, 3 and V31 are the
major and minor Poisson ratios, and G 3 is the transverse shear modulus.

The longitudinal strain-displacement relation has the usual form written as
EXX= =E.0+ z Ico (6)

with the beam strains given as

(E-0, CXO} = {u(x),, 0(x)} (6a)

where a comma () denotes partial differentiation. The transverse normal and transverse shear
strains can be expressed according to Reference 7 as

3



e =E2o+ A) K3 + + () Ko. Y,= .(4)y 10  (7)

where the beam transverse strain quantities and associated through-thickness shape functions are

E., K~, y} = , {w(x)/h, W2(X)1h 2, W(X)A +6(x)) (7a)

,, } = {V 13 7(4-742), - -4 (3 - (2),1l-42)1

The above expansions of the transverse strains constitute a major departure from the conventional
displacement formulation. In the present theory, the transverse strains satisfy compatibility in the
weak variational sense by

fh(E.-u)2dz =0, 5fh(y,.U-uZ)2dz =0 (8)

where 8 is the displacement variational operator. These transverse strains also ensure the exact
traction conditions at the top and bottom beam surfaces such that

C.(x, ±h) = 0, a,(x, ±h) = 0 (9)

The beam equations of equilibrium together with the natural boundary conditions are obtained
from the virtual work principle. Neglecting the body forces, the variational statement may be
written as

+ 0 +trY.)dAdx - f.q'(x)u(x, h)dxdy - f.q-(x)6u(x, -h)dxdy
(10)

++ T.,(0, z)]d4 - f [T u (L, z) + TL5u.(L, z)]dA = 0

where S and S- denote the top and bottom beam surfaces that are free of shear tractions and
subject to the transverse pressure loads

tC(x, h)=0, qj(x, h)=q(x) on S(1)

"t,(x,-h) =0, a,,(x,-h)=q-(x) on S-

where Tio and TL (i=x, z) are the tractions prescribed at the two ends of the beam (x=0, L), and
A is the beam's cross-sectional area (see Figure 1).

Integrating Equation 10 over the cross-sectional area results in a one-dimensional virtual work
statement written as

r(Nt&. + N Uzo + M Sicxo + MUK, + Q.8yo)dx - f{I'J(5w + . .w2) + q"2w}dx

(12)

+ N o8u(O) + M.,80(0) + Q.,ow(0) - N., u(L) - M ,LS(L) - Q.L5w(L) = 0

where the stress resultants are defined as
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(NX, NZ) = ~~ ~dA, (MX, M~) =f(zo. ~dA, Q. (13)

(A is the cross-sectional area)
and the applied normal tractions, end forces and moments are represented by

(q,, q2) = (q *- q-, q"* + q-), (q-,, -q2 = (q, b, Qb) (14)

(N.o,, N 1) = f(T, T)dA, (Mo, M ,) = f(T,. TL)zdA, (Q.,o, Q11) - f(Tjo , T~9dA

where T.o and TL have the same parabolic distribution across the beam thickness as the shear
stress, t. 7

In Equation 12, expressions associated with the arbitrary variations 8w and 8w 2 must vanish
independently, thus yielding the two higher-order transverse equilibrium equations 2

Nzlh-'2 =0, M 2/h 2 4 /5 =O (15)

Integrating Equation 12 by parts results in the remaining equilibrium equations
N =0, M -Q =O, and Q+=O(16)

with the natural boundary conditions:

At x--O:
(17)

NX(O) = N o or Su(O) = 0, M9(0) = M o or 80(0) =0, Q1(O) =Qo or 8w(O) =0

At x=L: (18)
N(L) = N or 8u(L) = 0, M1(L) = M , or 80(L) =0, Q(L) =Q or 5w(L) -'0

Computing the stress resultants (Equation 13) by applying both Hooke's law (Equation 4) and
the strain expressions (Equations 6 and 7) results in the beam constitutive relations which can
be expressed in matrix form as

{Z A13 A33  0 0 0 £1o

X 0 0 Dil D 13 0 1K,.o (19)
Q 0 0 D D 3 0 Ko

P. LO 0 0 0G (19

2 At this stage there is no integration by parts since w,(x) and w2(x) have no spatial derivatives in the variational

statement (Equation 12).
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where the Asj, D1j and G beam rgidities are given as

All= CIA, A13 = C1A, A33 =C33A

D11 =( 11 - C123 ]1, D 13---168 - 13, (20)
36C 33

D33 = 3  1 33, and G =k 2AG1 3

where

k2=5 and ly= z2dA (20a)

For a rectangular cross-section

A = 2hb and I = 2h3b (20b)

Substituting the relations for N, and M, from Equation 19 into Equation 15 yields the transverse
normal equilibrium equations in terms of displacements which in nondimensional form appear
as

W qW -V 13U x- q 2
h u 2C 33  (21)

W 2  V13h0 = 17q,

h 2 56C 33

which are readily solved for w, and w2. Introducing these variables into Equation 19 and then
substituting the force and moment resultants into Equations 15 results in the remaining equilibri-
um equations written in terms of displacements as

(E1Au), + (v,3hq"-2), = 0 (a)

(EI,0.Z).,X + 2(v 1 3h' , - k2AG 13(w. + 0) = 0 (b) (22)

[k 2AG13(w. + 0)]A. + T' = 0 (c)

As expected from a linear (i.e., small displacement) theory, the stretching (Equation 22a) and
bending (Equations 22b and 22c) equilibrium equations are uncoupled. Observe that by neglecting
the Poisson effect (i.e., by setting v, 3=0), Equations 22 can be reduced to those of Timoshenko
theory. Note, even though a higher-order transverse displacement expansion governs the deforma-
tion in the present theory, the boundary conditions (Equation 18) are the same as in Timoshenko
theory.

6



In the present theory, the solution procedure involves integrating Equation 22 subject to the
boundary conditions given by Equations 17 and 18, then substituting u(x) and 8(x) into Equation
21 to obtain w,(x) and w2(x). Note, the stress components are obtained in a consistent manner
from Hooke's law (Equation 4).

A TWO-NODE BEAM ELEMENT

To demonstrate the computational suitability of the present theory, a simple two-node beam
element is derived directly from the displacement variational principle (Equation 12). The
interpolation requirements for the element displacement field stem from Equation 12, where, as
in Timoshenko theory, the weighted-average displacements u(x), w(x) and 8(x) have derivatives
that do not exceed order one; therefore, Co shape functions can be used. Equation 12 contains no
spatial derivatives of wl(x) and w2(x), therefore the variables need only be C' continuous (i.e.,
discontinuous at the element nodes).

Now consider a two-node beam element of unit width (b=l), span Q and height 2h, loaded at
the top surface by a uniform distributed pressure q+(x)=q. The displacement interpolations can
be expressed directly in terms of nodal coordinates as4'5 which in the present notation are
superscribed with an Q, i.e.,

C -Continuous, Linear Functions

u(x) = (1 -l)u' 0 + Tru',, 0(x) = (1 -71)0,0 + 7l0' (23a)

C -Continuous, Quadratic Functions

w(x) = (1 -J)W* 0 +11w' + -1(1 -T )(8o,0 -O',) (23b)
2

C' -Continuous, Uniform Function

w(x) = W#1, W2(X) = W2 (23c)

where 1l = x/9 e [0, 1], and u'i, 0'i and w'i (i--0, 1) denote nodal degrees-of-freedom (dof). Note
that Equations 23 yield the beam strains that are uniform across the element span

0 Aw. -W0  ( - (010+011) (a)

(e1o, KO) = (u I - u0o, 0' - 0') (b) (24)

, 0  = l(w, W h) (c)

Substituting Equations 24 and 19 into the variational principle (Equation 12) yields the element
stiffness equilibrium equations in terms of the six engineering dof (u'i, wi, 0i, where i= 0, 1)
and the two higher-order displacements, W, and W2. Because the latter variables are

7



discontinuous at the nodes, they are readily eliminated at the element equilibrium level through
static condensation resulting in the following

W tV--h - _13(u. -U'o), WI2  1 L! .h 1
[ _ __ 

_ V 3( l U ) W 2=hV 13 h (of -010) (5
233 - J 56C33 - 29 1

Note that the same result can be obtained from the exact equilibrium equations (Equation 21) by
simply substituting the element displacement interpolations (Equation 23).

Z. W

0 u. w, 8 dof

0

nX.

Figure 2. A two-node stretching-bending beam element.

The resulting two-node element is capable of axial stretching and bending accounting for both
transverse shear and transverse normal deformations. The element has the simplest nodal pattern
with six engineering dof (see Figure 2).

The element stiffness matrix K* and the consistent load vector J corresponding to the vector
of nodal displacement dof {uo, u, w0, w1, 00, 011} have the form

Stiffness Matrix

kn k12 0 0 0 0

k2 k22 0 0 0 0

0 0 k33 k3 k35 k36  (26)

o 0k k4 k45 k46

0 0 k35 k45 k55 k56

0 O k 36 k46 k56 k6

8



where

= 2h 2hk2G13

k1l =k22 =-k 2 h E k3 =k~ =-k~ = 2a2 G 1k 2 3 -- 33

k5 = 1k6= hI E I 2 hk 2G 13 (26a)
k35 =k36  _--k4 - k46 k 33! , _k 1f

(133

k ' .1_2h{3E + 12hk2G56 31

Consistent Load Vector
f' {ff - 2 , f 2, f 3 , -f 3) T  (27)

where

A qv13h, f 2 = qQ, f3 = q(4h2v23 -"5- ) (27b)

The above element stiffness matrix (Equation 26) is identical to that of the two-node element
derived from Timoshenko theory;4 however, the consistent load vector (Equation 27) involves the
Poisson ratio v1 3 which does not appear in the Timoshenko element. (Note that in Reference 4,
the axial deformations have not been considered.) Since V13 appears in fl, it follows that the
element is capable of predicting the deformation of the midplane x-axis due to the transverse load
q, which is consistent with the theory of elasticity but is not accounted for in Timoshenko theory.
As in Timoshenko theory, the behavior of the element in the thin regime (as h--.O) is governed
by the ability of the kinematic field to accommodate the Kirchhoff constraint of the vanishing
transverse shear as follows

l(w ,-w' 0) -- (0'0 +O,) -+ 0 (28)

Moreover, in this theory, the inextensibility of the transverse normal fiber is also enforced in the
thin limit

(w, w2) -- 0 (29)

In the Kirchhoff constraint (Equation 28), the w and 0'i (i= 0, 1) dof are consistently
balanced. This is generally sufficient to guarantee locking-free element performance in the thin
regime. However, shear locking can still take place when excessive kinematic restraints are
enforced on a single element, such as in the case of a fixed-pinned beam;9 e.g., when the
displacement boundary conditions are set w' 0=0'0=w1 --0, giving rise to 01,--0 from Equation
28, which in turn yields zero bending curvature Kq0-40 according to Equation 24, or what is
known as shear locking. This pathological case, however, is readily resolved when two or more
elements are used in the finite element discretization. To further improve element performance
and to eliminate shear locking from the modeling case just described, a shear relaxation
parameter (a device which consistently relaxes the Kirchhoff constraint at the element level) can
be effectively employed.' 9

9



DISCUSSION OF RESULTS

To assess the predictive capability of the higher-order beam theory and to examine the
behavior of the proposed two-node beam element, a simple bending problem involving a simply-
supported, rectangular cross-section isotropic beam under uniform loading was considered. This
problem, having an exact two-dimensional elasticity solution," encompasses the effects of both
transverse shear and transverse normal deformations; therefore, representing a means for
evaluating our higher-order beam theory.

The analytic solution according to the present theory is obtained by introducing the uniformly
distributed loading q (applied at 4=1) into the differential equations of equilibrium (Equation 22),
which are then solved for the weighted-average displacement variables u(x), w(x), and 0(x)
satisfying the boundary conditions

u(0) = w(0) = M(0) = 0 (30)

w(L) = N(L) = M(L) = 0

The beam is taken to be of unit width (b=l), thickness 2h, and it spans xe [0, LI.

_ N ..

------------------------

---- CLASSICAL

-- TIMOSHENKO_8 - PRESENT

7 0- ELASTICITY

.60 I ,
1 6 11 16 21

SPRN/THICKNESS

Figure 3. Maximum midplane deflection versus span-to-thickness ratio.

In Figures 3 and 4, the analytic solutions of the present higher-order beam theory are compared
with those of the classical and Timoshenko theories, as well as the exact elasticity solution.
FigL.,e 3 depicts the maximum midplane deflection u,(L/2,0), normalized with respect to the exact
elasticity solution, which is plotted versus the span-to-thickness ratio (L/2h). It is seen that even
in the extreme thickness case of L/2h=l, the present theory underestimates the maximum
midplane deflection only by about 5%. Although the deflection curve due to Timoshenko theory
is presented for comparison, it only represents a weighted-average deflection and not the

10



3.0

"2 .5
CC -.-...- CLAS ICAL A TIMOSHENKO

2 .0,2. - _EXACT & PRESENT

U
LUI

1 .5

1- 0 -- -- -- -- -

1 6 11 16 21
SP:N/TH I CKNE53

Figure 4. Center-span curvature versus span-to-thickness ratio.

1 .0

L/2h=2
.50 - Present

- -- Exact

0.

- .50

-1 .0 ,
-4. 0 -2.0 0 - 2-0 4 .0

Ox (V/2. z)/q

Figure 5. Distribution of axial stress across thickness for deep beam (L/2h=2).

midplane deflection, where the latter quantity is unobtainable from the Timoshenko theory. Figure
4 shows a normalized value (with respect to the classical solution) of the curvature computed at
the center the beam span (x=L/2) versus L/2h. Both the exact elasticity and the present higher-
order theory show identical solutions for the entire range of L/2h, whereas the classical and
Timoshenko theories produce appreciably erroneous results in the thick regime (for L/2h<_5). This
result provides evidence for the acceptability of the higher-order theory.

11



1 .0-

- EXRCT & L/2h=2
-PRESENT

.5S0 Y (x, z)/q

"', - -" '[z (0, z)/q

u0 .

- .50 -/

-1.0- ,I , ,

0. .50 1.0 1.5 2.0

stress/q

Figure 6. Distributions of transverse shear and transverse normal stresses
across thickness for deep beam (L/2h=2).

Figures 5 and 6 demonstrate the through-thickness distributions of the stress components
Y.(L/2,z), a.(x,z) and rt(O,z) for the case of a very deep beam, L/2h=2. Whereas rather slight

differences are observed in the prediction for the normal stress (Figure 5), the transverse stresses
obtained from the present theory agree with those of the exact solutions (Figure 6).

The results obtained by the finite element discretization, employing regular meshes with the
use of the two-node beam element, are shown in Figures 7 through 9, where convergence studies
for the displacement, strain and stress variables for the deep beam case (L/2h=2) are presented.
The errors were computed from comparisons with appropriate exact elasticity solutions.
Throughout, the results are either exact or converge rapidly to the exact solutions with mesh
refinement.

Finally, it should be noted that the present two-node element, having the same stiffness matrix
as its Timoshenko theory counterpart,4 does not suffer from shear locking in the thin regime. The
element can also be used with the shear relaxation parameter to further improve results for
coarsely discretized models.

CONCLUDING REMARKS

This report presented a variational higher-order theory for the bending and stretching of elastic
orthotropic beams, including both transverse shear and transverse normal deformations. The
particular appeal of the theory is that it provides a displacement variational framework for
developing effective and computationally efficient beam finite elements with the ability to predict
accurately the through-thickness distributions of all displacement, strain and stress components.

12
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Q: 3 .0 -..8-U, WI & 0v

o 2.0

i- 1.0
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C_ 1 .0
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4 12 20 28 36 44
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Figure 7. Convergence of maximum kinematic variables for deep beam (L/2h=2).

6.0

s.o L/2h=2
4 o 0e Ex (LJ2, h)

" 3.0 E(x,h)

WJ 2.0

1 .0
ILj

or_ 0. -4

-1 .0

-2.0

-3 .-0 ,

4 12 20 28 36 44

NUMBER OF ELEMENTS

Figure 8. Convergence of maximum strains for deep beam (LI2h=2).

A simple two-node element, derived from the variational theorem, demonstrated improved
modeling capabilities over a comparable Timoshenko element, particularly, in the analysis of
thick-section beams.
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Figure 9. Convergence of maximum stresses for deep beam (L/2h=2).

ACKNOWLEDGEMENT

The author wishes to thank his colleagues Donald Neal, Donald Oplinger and William
Matthews for their valuable review comments on this report.

14



REFERENCES

1. TIMOSHENKO, S. P. On the Correction for Shear of the Differential Equation of Transverse Vibrations of Prismatic
Bars. Phil. Mag., v. 41, 1921, p. 744-746.

2. TIMOSHENKO, S. P. On the Transverse Vibrations of Bars of Uniform Cross-Section. Phil. Mag., v. 43, 1922, p.
125-131.

3. HUGHES, T. J. R., TAYLOR, R. L., and KANOKNUKULCHAI, W. A Simple and Efficient Element for Plate
Bending. Int. J. Nuner. Meths. Engng., v. 11, 1977, p. 1529-1543.

4. TESSLER, A., and DONG, S. B. On a Hierarchy of Conforming Timoshenko Beam Elements. Comput. Structures,
v. 14, 1981, p. 335-344.

5. TESSLER, A., and SPIRIDIGLIOZZI, L. Curved Beam Elements with Penalty Relaxation. Int. J. Numer. Meths.
Engng., v. 23, 1986, p. 2245-2262.

6. ESSENBURG, F. On the Significance of the Inclusion of the Effect of Transverse Normal Strain in Problems
Involving Beams with Surface Constraints. J. Appl. Mech., v. 42, 1975, p. 127-132.

7. TESSLER, A. A Higher-Order Plate Theory with Ideal Finite Element Suitability. Comput. Meths. Appl. Mech.
Engng. v.85, 1991.

8. TESSLER, A. A Higher-Order Plate Theory with Ideal Finite Element Suitability. MTL TR 89-85, Sept. 1989, U.S.
Army Materials Technology Laboratory, Watertown, Mass.

9. TESSLER, A. An Improved Higher-Order Theory for Orthotropic Plates. Proc. 13t' Annual Composites Review,
1988, p. 59-65.

10. TESSLER, A., and SAETHER, E. A Computationally Viable Higher-Order Theory for Laminated Composite Plates.
ntJ. Numer. Meths. Engng., v. 31, 1991; also MTL TR 90-59, Nov. 1990, U.S. Army Materials Technology

Laboratory, Watertown, Mass.
11. TESSLER, A., and SAETHER, E. Efficient Finite Element Modeling of Laminated Composite Plates Based on

Higher-Order Theory. Proc. 8"b DOD/NASA/FAA Conf. on Fibrous Composites in Structural Design,
NASA Conf. Publication 3087, Part 1, 1989, p.311-323.

12. TESSLER, A., and HUGHES, T. J. R. A Three-Node Mindlin Plate Element with Improved Transverse ^,hear.
Comput. Meths. Appl. Mech. Engng., v. 50, 1985, p. 71-101.

13. LEHKNITSKII, S. G. Theory of Elasticity of an Anisotropic Elastic Body. Holden Day, 1963.
14. TIMOSHENKO, S. P. Theory of Elasticity. 1st ed., McGraw-Hill, 1934, p. 38-42.

15



DISTRIBUTION LIST

No. of
Copies To

1 Office cf the Under Secretary of Defense for Research and Engineering, The Pentagon,
Washington, DC 20301

Commander, U.S. Army Materiel Command, 5001 Eisenhower Avenue, Alexandria, VA 22333-0001
1 ATTN: AMCLD

Commander, U.S. Army Laboratory Command, 2800 Powder Mill Road, Adelphi, MD 20783-1145
1 ATTN: AMSLC-IM-TL
I AMSLC-CT

Commander, Defense Technical Information Center, Cameron Station, Building 5, 5010 Duke
Street, Alexandria, VA 22304-6145

2 ATTN: DTIC-FDAC

1 Metals and Ceramics Information Center, Battelle Columbus Laboratories, 505 King Avenue,
Columbus, OH 43201

Commander, Army Research Office, P.O. Box 12211, Research Triangle Park, NC. 27709-2211
1 ATTN: Information Processing Office

Commander, U.S. Army Electronics Technology and Devices Laboratory, Fort Monmouth,
NJ 07703-5000

i ATTN: SLCET-DT

Commander, U.S. Army Missile Command, Redstone Arsenal, AL 35898-5247
1 ATTN: AMSMI-RD-ST "
1 Technical Library

Commander, U.S. Army Armament, Munitions and Chemical Command, Dover, NJ 07801
2 ATTN: SMCAR-TDC

Commander, U.S. Army Natick Research, Development and Engineering Center, Natick,
MA 01760-5010

1 ATTN: Technical Library

Commander, U.S. Army Tank-Automotive Command, Warren, MI 48397-5000
i ATTN: AMSTA-R

Commander, U.S. Army Engineer Waterways Experiment Station, P.O. Box 631, Vicksburg,
MS 39180

1 ATTN: Research Center Library

Director, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD 21005
1 ATTN: SLCBR-DD-T (STINFO)
1 SLCBR-IV-M, Dr. W. H. Drysdale
1 SLCBR-TB-W, Dr. J. Walter

Director, Benet Weapons Laboratory, LCWSL, USA AMCCOM, Watervliet, NY 12139
i ATTN: AMSMC-LCB-TL

Commander, U.S. Army Foreign Science and Technology Center, 220 7th Street, N.E.,
Charlottesville, VA 22901-5396

3 ATTN: AIFRTC, Applied Technologies Branch, Gerald Schlesinger

Commander, U.S. Army Aviation Systems Command, Aviation Research and Technology Activity,
Aviation Applied Technology Directorate, Fort Eustis, VA 23604-5577

1 ATTN: SAVDL-E-MOS

Director, Langley Directorate, U.S. Army Air Mobility Research and Development Laboratory.
NASA-Langley Research Center, Hampton, VA 23665

I ATTN: Aerostructures Directorate

Naval Research Laboratory, Washington, DC 20375
1 ATTN: Code 5830

Office of Naval Research, 800 North Qoincy r,,trt. *\lr InqIon. VA I27 - 00O
I ATTN: Mechanics Divilsnn, Code l13?-'M



No. of
Copies To

U.S. Navy David Taylor Research Center, Bethesda, MD 20084
1 ATTN: Code 172

U.S. Air Force Office of Scientific Research, Boiling Air Force Base, Washington, OC 20332
1 ATTN: Mechanics Division

Commander, U.S. Air Force Wright Research & Development Center, Wright-Patterson
Air Force Base, OH 45433-6523

1 ATTN: WRDC/MLLN

NASA - Marshall Space Flight Center, MSFC, AL 35812
1 ATTN: EHO1, Dir, M&P lab

1 Committee on Marine Structures, Marine Board, National Research Council, 2101 Constitution
Avenue, N.W., Washington, DC 20418

U.S. Army Research Office, P.O. Box 12211, Research Triangle Park, NC 27709
1 ATTN: Dr. Robert Singleton
1 Dr. Gary L. Anderson, Chief, Structures and Dynamics Branch, Engineering Sciences

Division

NASA - Langley Research Center, U.S. Army Aerostructures Directorate, USAARTA, Hampton,
VA 23665-5225

1 ATTN: Dr. Wolf Elber, MS 266

NASA - Langley Research Center, Hampton, VA 23665
1 ATTN: H. L. Bohon, MS 243

George Washington University Center - at NASA - Langley Research Center, Hampton, VA 23665
1 ATTN: Professor A. K. Noor, Mail Stop 246C

NASA/GSFC, Greenbelt, MD 20771
1 ATTN: Mr. William Case, Mail Code 725

Ship and Submarine Materials Technology, DTRC-0115, Annapolis, MD 21402
1 ATTN: Mr. Ivan L. Caplan

Director, Structures Directorate, USA MICOM, Redstone Arsenal, AL 35898-5247
1 ATTN: AMSMI-RD-ST, Dr. Larry C. Mixon

Benet Laboratories, Watervliet Arsenal, Watervliet, NY 12189-4050
1 ATTN: Dr. Giuliano D'Andrea, Chief, Research Division
1 Dr. John Vasilakis, Chief, Applied Mechanics Branch

Office of Naval Research, Solid Mechanics Program, 800 North Quincy Street, Arlington, VA
22217-5000

1 ATTN: Dr. Roshdy Barsoum, Code 1132

Massachusetts Institute of Technology, Department of Mechanical Engineering, Cambridge,
MA 02139

1 ATTN: Professor K. J. Bathe
1 Professor David Parks

Massachusetts Institute of Technology, Department of Astronautics and Aeronautics,
Building 73, Room 311, Cambridge, MA 02139

1 ATTN: Professor Ted H. H. Plan

I Professor S. N. Atluri, Director, Center for the Advancement of Computational Mechanics,
Georgia Institute of Technology, Mail Code 0356, Atlanta, GA 30332

1 Dr. Lawrence C. Bank, The Catholic University of America, Department of Civil Engineering,
Washington, DC 20064



No. of
Copies To

1 Professor Ted Belytschko, Northwestern University, Department of Civil Engineering,
Evanston, IL 60201

I Professor Fu-Kuo Chang, Stanford University, Department of Aeronautics and Astronautics,
Stanford, CA 94305

I Professor Tse-Yung P. Chang, The University of Akron, Department of Civil Engineering,
Akron, OH 44325

1 Dr. Sailendra N. Chatterjee, Materials Sciences Corporation, 930 Harvest Drive,
Suite 300, Blue Bell, PA 19422

1 Professor Thomas J. R. Hughes, Stanford University, Division of Applied Mechanics,
Durand Building, Stanford, CA 94305

1 Professor S. W. Lee, University of Maryland, Department of Aerospace Engineering,
College Park, MO 20742

1 Professor Alan J. Levy, Syracuse University, Department of Mechanical and Aerospace
Engineering, 139 E. A. Link Hall, Syracuse, NY 13244-1240

1 Professor J. N. Reddy, Virginia Polytechnic Institute and State University, College of
Engineering, Department of Engineering Science and Mechanics, Blacksburg, VA 24061-0219

1 Professor L. W. Rehfield, University of California at Davis, Department of Mechanical
Engineering, Davis, CA 95616

1 Professor Eric Reissner, University of California at San Diego, Department of Applied
Mechanics and Engineering Science, LaJolla, CA 92093

I Professor John N. Rossettos, Northeastern University, College of Engineering, Department
of Mechanical Engineering, 360 Huntington Avenue, Boston, MA 02115

1 Professor J. C. Simo, Stanford University, Division of Applied Mechanics, Stanford,
CA 94305

i R. L. Spilker, Rensselaer Polytechnical Institute, Department of Mechanical Engineering,
Aeronautical Engineering and Mechanics, Troy, NY 12181

1 Dr. G. M. Stanley, Lockheed Palo Alto Research Laboratory, Mechanics of Materials Engineering,
Palo Alto, CA 94304

1 Mr. Joseph R. Soderquist, Federal Aviation Administration, 800 Independence Ave.,
S.W., Washington, DC 20591

1 Mr. D. Erich Weerth, FMC Corporation, MD P95, 2890 De La Cruz Blvd, Box 58123,
Santa Clara, CA 95052

1 Dr. E. T. Camponeschi, David Taylor Research Center, Code 2802,
Annapolis, MD 21402

1 Dr. John H. Bode, Honeywell Armament Systems Division, 7225 Northland Dr.,
Brooklyn Park, MN 55428

1 Dr. Paul A. Lagace, Massachusetts Institute of Technology, Room 33-303,
77 Massachusetts Ave., Cambridge, MA 02139

1 Mr. Terry L. Vandiver, U.S. Army Missile Command, ATTN: AMSMI-RD-ST-CM,
Redstone Arsenal, AL 35898-5247

1 Mr. Peter Shyprykevich, Grumman Aircraft Systems, MS B44-35,
Bethpage, NY 11714

I Professor Isaac Fried, Mathematics Department, Boston University,
Boston, MA 02215

1 Professor C. A. Felippa, Department of Aerospace Engineering Sciences and
Center for Space Structures and Controls, University of Colorado,
Boulder, CO 80309-)429



No. of
Copies To

I Professor A. F. Saleeb, Department of Civil Engineering, University of Akron,
Akron, OH 44325

I Professor Stanley B. Dong, Department of Civil Engineering, University of
California, Los Angeles, CA 90024

I Professor Richard B. Nelson, Department of Civil Engineering, University
of California, Los Angeles, CA 90024

1 Dr. R. Badaliance, ATTN: Code 6380, Naval Research Laboratory,
Washington, DC 20375

1 Mr. A. D. Carlson, Engineering Mechanics Division, Naval Underwater Systems
Center, New London, CT 06320

Director, U.S. Army Materials Technology Laboratory, Watertown, MA 02172-0001
2 ATTN: SLCMT-TML
I Author



0. 0

0 - m aU E'm W.a t
W< 00 - 4 0 0 0 u ~ a- E< C0 4 0 a)C .C W 4.-Q C W Q

m WE-O m 4044 C> 0= 4- 0E'0. x 0 m
04-00 au . -.- W ~ >4 3 W 04<~~~~~~ 0< IV yfO C D - 0 4. D

-~4 4C <0 'C 4<0 - C -> C CLc c0 00' . CO >

110 c.. Lm C'O >00. 0.4 C. _1 -W4 W3 owI -' 0 E -4 ~
21,0c4- 04- 0) C)--- O a :3 41).044.4 4- 0 4 05

..4O tL.. g4 <04 Z;. w -- I 4 4 - < 0
1-44.a 0.4 0. 04 0 - 00 0> 4 1 1-, - "C E4 0''4444)- 0

E- 04c ECCL C 40 m.- E00 m- C C4 CO 0l 400~~ ~~40~ W~00 ~ ~ 0 -0 m mo- c~o -- c -uo 41

WO W <400-4.. > WUO WC O U >

0 c O .. ~ W W 0,C4L .. 4 O

0. W<<. 0)O 0.4 Ea)- -) -c
C44LOCOD4<4401.4' C'4 4L E O4 4 O

W- u0 00 1-4000D S4 0 0.a4 0OC
aO.C C >00;E . 0a 0 0 0.. . EC 0Q0 0.Q

* EL 00* 4- ~~t 41>- SO< E L.4CV
a E. 0 4-44 .

4  
-. a -. DOC0 .44 4 0-4

0 .- . w 00 U w u a'WI 0 .C <44 0 .44aU
'D a 4 U - <00>-0W 04Q-4nC- I0 'o >U.04<C0 . W Oj W

- - - O 0 O= --. E L0 cu E S- (L 00(L) E0 c

- CL0 3 OVL0 cu0. 3,0 C-4.
a, O a,-04 W..C4C< a,0 , 0444 o. C 4 c

W-4m 0 a,.COW 00- 4 0 W . . T3< 1
V ~~~ 04 4<CoEU-'04 L 4I 4 4L.00.404L44

4
~ - D44CQ - O-04-404 Z;WCL 00400. 1C0E

04.-~~~~~~ 0 0,-4.m S- 0 << 0-« 0 . 044 04 0 U 4
CQ 0. m 1.4 0L 0a 4 0 E a o C4. E1400''0 C0

04<14 CD I44' @L4 Q,4 Ell 0WE 0'D 044j C) C.-.2L 0C Q 4 F= a)E .4
.40.~4w 0 =,T 4<0DO<- .T W0 CO < -z .. 4<004- 0- W

40 W Q>a~< 0 0 .. ' W <-. 0M - >a.4- 0 C . L
C w4-/ a, >-, 00.- 4 4-4 044-, a, O-O-0C404 m- -'.4
C) 0 v4L.O 0 0. 004 1 W0 w4~ CLW a0.-0 En 004<>)

140 4 40--40 40 .0 4<1 0E -L > .0 >
OU).0LQ, 00 4< 0 .04 < O

1
.>-O W c 00-<0 0U

< 
0 

Z < 4<. 0..0<<-0 0 W 0.2 014 -4 .44-441-0. I

-- a c m u -0W 0- L 0 a-04< W 1

> < OO44 u3 o W0> < W00>4 >

I Oi 2C CC- CC - 0 4000~0 .I-T I mCu-44 = ma5 I!I 0. C 0 4< E - -L~~~o~~0 12 DUW- ~ 
4

0 4 14 C 0 ,4

-40 . 4 0 -y, t-- - - 4 0W> C
W a <C C'a<4E4-.40LaO

w 0 Q W 0.04 0L) 0 c 0 wo- m .0 0 ItC 0 cc C C 1

w 0L

< Co 't- )M'0M EW o 4

:C 4- 4iDC'2 - C) 0- M C W4 . CI

0: 0< 00ow l 0 2C . 040 : )0 CC0 0

C00 W41w44-4-0. 0.
444 41400 4<4. 44.. 04 ~ 04- 0 0<1.. 44.

-~~~~~~~ 4< > 0 n 4 c - a40 ~ 4 4 C C 0 4 O

M C144 0 W U < - C~ IL c E.. 0 0) Q < . 0 Q
.4W W w4 QQ,4< .C0 W4 --. 4 C4C-- c,04 0 < 0

f C L 0 W-~ 00 04<4- EDO>. 1. 04-4 C C 04<0- 0 OO0N, 44m

-- E0) cm-O C 0004 0< 0 .z0 L 40-C OO 0 4 <0
-) 00- 000 U> <L00 . cC EO U>4<L co E<.O

< 0.f w < (L. W W-<- r.-C. .j W m.L. C OC. .

0 00O.44L.4-0 W0- 0 001.C4L )LO .
0 ms- C 04 4<1 a. 4 0 1 0 m<

L..UOO -C La 0m W- - .00 LELaO Q
>1.~-L4 cowmcaD.

C-4.LO4<-0 A a Q C U cm wOO4<c44c >U
04<00 m 0- -I 0L - I <4 0 0n04 4 00-C U.

0E. 00.- E O .44 WL 00-E L 4

0. 4-00 .00. 0 m 2..-. o0. 00 I U

0 > .444 E4 a . > U L a 0 O-4<4-4414- EN

4--~ c 0 -' 0- - 0 u. E 0 1 O - -0

0~~~~I E 0000- 'o- E4 LI o0~0~. -0.. -r EL 0 L4 0 . -4-40. E CL 040444
4 

4 4 0

>4.-4 a, 04OV 4 IV.4 O <C < >4-4Z a, A4 4 w O.2CC4 c,

00<L =C .-4C-- 4 E -- -0 <0 - WCC - C - O - 0 - 4
U0> 4-4 -a u 2,4 >o - Q4~ 4 0 O -. 0 044-

0Q .0 >4 4<4- 1..0 2 U 4. 0 4. 0 a) a, 4 L O U 4. 0 .- L 4

L tC) L 0 0 0 . - 0 - 0 C 0 4 4-C') z L) 0. - 0.C00 4 4
0 . 0.4 0a, m U m << 0 .U 0' 0CIL 44

,x
4

44 C - ,-a 4L0 m 4-44< 0- cC4 C o4. L 0 C E-44-0,44Q.4<cC0coI QO.C a E E 0 --: 4 0 0 -C) - aLO ELaLEO E- o
c ~~~ 0.:v- "'L 4-00 w.4 03 )00= T-

<-- 00v L>0444 oOO u= E m . a)
w* 4L)0- 0.0 -040 .004S- 04- -4 2. _ _a 0 00 <

0- u 4440 041)'L<. C.3~0 < 04 --04

-
0

.DZ4 ~ 0 04-4'a 0<<044- W E c ~ 4 w4 0 a---A< DE Cv
0444-'a COC 104C 04m a, 44- 0 4 U

-- w 1 -o 0"a O 00 4 O 0- W'0 ' 0 L.- 040 104- ~--.0 L -C 00 C 0 04. LC --. 0- 00- C C0<
a, -O a . - 0 4< 30 -4 aC 3~ o . C C 4 0 4

000-c 0 - d-4--.--- 4 00a0 '4-<0 4000- n O -- <4..-4< 0 0 <4

w '0D0 W m ..100 4 4 4< C (<. >40 Dy 4 mO '4
4 

-0 4 L 4 < 0Q
E~~L4LI~~~0 W).- ~ mu44- 0. . .0O EcIL~ 0.C44 4.4444 n

CC 3 M-<40<-4U 0000 U n C 14.4 04<C- - CUWoM
<-0 3 DE -1? cu 0D E- O 40 -0uo

1.44c =. I0< - 0 0 - 0 4 > uO - 414W04.40.a,
w0 C wm ,> S.. E W u * C0 , u 4- '0~L-----------W -----------


